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SUMMARY A 
The stability of spherical plate elements in both elastic and fully plastic 

ranges,  is treated. 

axially loaded circular flat plates, where boundary conditions a r e  significant, 

and spherical shells, where boundary conditions a r e  insignificant. 

transition region a linear stability theory i s  used to investigate the effect of 

various boundary conditions and also to determine, in some detail, the regions 

in  which the axisymmetric and asymmetric buckling modes govern. 

Such elements fall in the transition region between 

In this 
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STABILITY OF SPHERICAL PLATES 

Introduction 

The use of spherical plates as pressure vessel  closures in aero- 

space vehicles has generated renewed interest  in the stability of spherical 

plates under external pressure.  

spherical  elements that fall in the transition range between axially loaded 

a r c u l a r  flat plates where boundary conditions a r e  significant and spherical 

shells where boundary conditions a re  insignificant. 

The t e r m  spherical plates refers  to those 

In this paper, elastic and plastic stabilities of spherical plates a r e  

studied using small  deflcction theory to  investigate the influence of various 

boundary conditions and also to determine in some detail the regions in 

which the axisymmetric and asymmetric buckling modes govern. 

l inear stability theory is known to yield buckling loads higher than experi- 

mental results for spherical shells, it i s  also recognized that linear stability 

While 

theory is in agreement with experiments on flat plates. As a consequence, 

the use of linear theory for spherical plates may provide some useful results 

When a spherical shell buckles under external pressure ,  the buckle 

wavelength is confined to a small  portion of the surface and the cri t ical  s t r e s s  

can be evaluated without specific reference to the boundary conditions. As 

another limiting case,  let  us consider the instability of a flat Circular plate 

under axial compressive loading. 

mode is of the same order of magntide a s  the plate diameter and the buckling 

s t r e s s  is considerably influenced by the edge support. 

Here the half wavelength of the buckling 

It is evident from these two examples that the transition from the flat 

plate case to that of the full sphere can be effected through a ser ies  of spherical 

plates or shallow caps. Such a spherical plate is defined in the usual manner 

of shallow shell theory: i ts  vertical r i s e  is small  compared to a characterist ic 

horizontal length, the buckle half wavelength or the diameter of base circle. 

The spherical plate solution will readily yield the results of the 

circular plate case by letting the appropriate t e rm containing the height of 

the shell vanish. 

as a singular case of the same equations. 

It i s  also possible to obtain the solution of the full sphere 
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Covernine Eauations 

In deriving the governing equations for the stability of spherical 

plates,  the assumptions of shallow shell theory lead to  simplifications in 

both the equilibrium and strain-displacement relationships. 

the distance from the axis of the shell to the edge of the cap is taken as the 

unit of length and hence all lengths a r e  essentially dimensionless. 

In the following, 

The s t ra in  displacement relationships are:  

E = u / r  t ( l / r ) (au, /ae)  t w/R xe = ( l / r ) ( a w / a r )  t (1/r*)(a2w/ae‘) (1) 
6 9 

In the above equations, E, x denote the direct s t ra in  and curvature 

and w the displacements in the meridional, circumfer- 
t$’  

€9 9 e 9 et$ 

variations; u 

entia1 and normal directions respectively. The direct strain variations 

€ € , a r e  seen to satisfy a compatibility relationship: 

The equilibrium equations for the buckling problem of a shallow 

spherical  cap under external pressure,  consistent with the s t ra in  displace- 

ment relations Eqs. (1) through (3 ) ,  a r e  

a ( r N  ) / a r  t aN+, /ae  - Ne = 0 

a ( r N  ) / a r  t aNe/ae  t N = 0 ( 6 )  

(l/r) [a2(rM+)/ar2 t 2 a2(M w ) /&a8 - 8Me/ar + ( 2 / r )  aM e+ /a0 1 

(5) 9 

+e  9 0  

t ( l / r2)  a2M / a e 2 t  1/R ( N e t  N ) t p t u t  Vaw = 0 (7) 
0 9  9 
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(3Et/Es + 1 ) / 4  

(3Et/Es - 1) /2  

(3Et/Es - 1) /2  

(3Et/Es t 1 ) / 4  

0 

3 

In Eqs. (5) to (7), N, M refer to the direct s t r e s s  and moment resul-  

tants respectively; p i s  the external pressure ,  u the constant compressive 

s t r e s s  (=pR/2t) at buckling, R the radius of the sphere of which the cap i s  a 
par t ,  t the thickness of the shell and v2 the Laplacian operator. 

From Eqs. (5) and (6) it i s  readily seen that a s t r e s s  function F can be 

introduced such that they a r e  satisfied identically. 

tants then a r e  derivable f rom the s t r e s s  function F as shown: 
The direct s t r e s s  resul-  

= ( l / r )  aF /a r  + (l /r*) a2F/aeZ 
N+ 

= aZF/arz ( 8 )  

N = - (a/&) [ ( l / r )aF/@] 
$3 

The plastic stability theory used herein,  following Ref. 1 , is based 

on a deformation theory of plasticity. Hence the s t r e s s  strain relationships 

for the spherical plate case a r e  similar in form in both elastic and plastic 

ranges. It would be advantageous to derive the governing equations in t e rms  

of the plastic coefficients so that the elastic results a r e  readily obtained by 

modifying the coefficients suitably. 

The s t r e s s  resultant-strain relationships in the plastic range (Ref. 1) 
for the spherical plate are: 

- 

where B, . D  a r e  the axial and flexural rigidities in the fully plastic range, 

given by B = E t( 1 - v 2  ) and D = E t3 / 12( 1 - v z  ), with v 

value of Poisson ratio ( = 1 / 2 )  and E 

being the full plastic 
S P S P P 

the secant modulus. 
S 

A i s  a component of the plasticity coefficient matrix A 
11 ij’ which for 

the spherical case has the following form, (Ref. 1): 9 1 



where E is the tangent modulus. 

parameter given by: 

Finally A in Eqs. (9) to (11) is a plasticity t 

A = (1/2) A 1 2  / A  11 = (3Et/Es - 1)/(3Et/Es t 1) (13) 

It is clear f rom Eqs. (9)  to ( l l ) ,  with the definitions of the various 

coefficients, that the above relationships can be carr ied over to the elastic 

range with the following modifications: E t  = E 

A,, = 1. 

Et3 /12(1- v:) respectively ( uebeing the elastic Poisson's ratio). 

replaced by ve the elastic Poisson ratio. 

= E ,  the elastic modulus; hence 
S 

B, D now refer  to axial and flexural rigidities given by Et(1-v: ) and 

i s  to be 

With foregoing modifications all the results that a r e  obtained in the 

plastic case can be written readily for the elastic case. 

Then the stabiiity problem of the spherical plates reduces io the aolvhiig 

of Eqs. (4) and (7). These can be modified to yield a pair of coupled equa- 

tions in F and w by making use of the s t ress-s t ra in  relationships Eqs. (9) to 

( l l ) ,  and the s t ra in  displacement relationships Eqs. (1) to (3) and Eq. (8). 

The final form of these governing equations are:  

V z V 2 F  = ( E t t / A  R) Vzw 
11 

DAll V 2  V 2 w  t (1/R) V 'F  t p t u t  V 2 w  = 0 (15) 

Before we deal with Eqs. (14) and (15) a s  such, i t  is advantageoas to 

study the flat circular plate and full sphere cases first .  

Flat Circular Plate 

For a flat circular plate under axial compression with R-'w in 

Eqs. (14) and (15), we obtain the following governing equations: 

V 4 w  t (crt/DAll) V2w t (p/DAll) = 0 

4 



If we let p = 0 in  Eq. (16), we have 

v2 (V2 t a 2 )  w = 0 

where = ( ut/DA ). The general solution of Equation (17), with the 

requirement that w ,  l / r  &/  a r  and 

writ ten as 

11 
az/ a r 2  be finite at r = 0,  can be 

m 

w = 1 [C r n +  c J (ar)]  cosne 
in n on 

when n represents the number of nodal lines on the deformed surface. 

For  the typical boundary conditions of simple support and full edge 

fixity at r = 1, we obtain the following characteristic equations for determining 

a :  

Simply supported edge: w = O ,  M r = O  

1 
(a) = 0, (Y = (ut/DA )’” a Jn(4 - (1 - A )  Jn + 11 

Plastic : 

1 
Elastic: a Jn(4 - (1 - Ve)Jn + (a) = 0,  a = ( u t / D ) T  

Completely fixed edge: w = o ,  h / a r  = 0 

1 

Plastic: J n + i  (a) = 0, a = (ut/DA 11 )” (204  

1 

Elastic: J n +  1 (a) = 0 a = (ut/D)T ( 20b) 

For a given n,  the roots of Eqs. (19) and (20) correspond to increasing 

number of nodal circles. 

would correspond to the axisymmetric case with one nodal circle at the edge. 

If m denotes the number of nodal circles,  then we can characterize the solu- 

tions of Eqs. (19) and (20) by their m,  n number, Fig. (1) shows some typical 

shapes of the modes taken f rom Ref. (2). 

Thus the first (lowest root) of Eq. (19) for n = 0 

5 



The following table shows some of the typical values, for the first 

four modes, of an elastic buckling coefficient k = u t  dZ/.rr2D = a2d2/.,rZ, 

where d is the diameter of the plate. 

ized with respect to  the base radius, k becomes equal to  4 c r z / . r r z  

Eq. (19b) vehas been taken equal to  0. 3 .  

Since all linear dimensions are normal- 

. In 

TABLE 1. ELASTIC BUCKLING COEFFICIENTS FOR FLAT CIRCULAR PLATE 

~ ~~ 

Edgeconditions m = l  n = O  m = l  n = l  m = l  n = 2  m = 2  n = O  

Simply Supported 1.70 5. 32 10. 05 11.78 

Fully Fixed 5.95 16.5 2 0 . 0  

In order to separate the plasticity effects it is useful to define a 

plasticity reduction factor ;I , following Ref. ( l ) ,  given by 

In Table 2 below, we have the results of Eq. (19a) with n = 0 given in 

t e r m s  of for different Et/E ratios. 
S 

TBBLE 2. PLASTICITY REDUCTION FACTORS FOR A SIMPLY SUPPORTED 

FLAT CIRCULAR PLATE 

Et/Es 

1 . 0  

0.75 

0. 50 

0. 25 

0 

1 . 0  

0.765 

0.526 

0 . 2 7 8  

0 
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Full SDhere 

Equations (14) and (15) a r e  transformed, after operating with 0 2 ,  

into the following: 

V'W t (crt/DAll) V% + (Et t /A2 D R 2 ) V h  = 0 (22) 
11 

V 6 F  t (ut /DA ) V 4 F  t ( E t t / A 2  D R 2 ) V 2 F  = -(Ett/DAilR)p (23) 
11 11 

We assume a constant s t r e s s  state throughout the region under pressure given 

byV F = - pR so that Equation (22) is satisfied identically. 
Then a suitable form for  displacement w would be 

w = CnJn (kr) cosn8 ( 24) 

By substituting Eq. (24) into Eq. (22) and obtaining a minimum condition for 

( crt/DA ) we find that 

1 
(u t /DA ) = 2(Ett/DA2 11 Rz)z ( 25) 

11 min 

or 

where 

In Eq., (27) v is the current Poisson ratio appearing in D = E t3 / 12(1-v2) 

as in Ref. 1. It is readily seen that by taking q = 1 in Eq. (26) we get the 

elastic cri t ical  s t ress .  

S 

It is clear that the expression for u in Eq. (26)  is independent of n c r  
in the expression for w in Eq. (24). 

we get the same crit ical  s t r e s s  for the sphere. 

Hence for both axi- and asymmetric modes, 
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Spherical Plate 

In the case of a spherical plate, where both curvature and boundary 

affect the buckling s t r e s s ,  a simple assumption on the s t r e s s  state cannot be 

made as in the case of the sphere. 

solutions of Eq. ( 2 2 )  and (23 )  which can be written conveniently as 

Hence, we must consider the general 

where 

and 

V L  (V2 t k2) ( V 2 t  k2 )  w = 0 
1 2 

V(V2 + k2 ) (02 t k2 ) F = - k2 k2 Rp 
1 2 1 2  

1 
k2, k2 = a 2 / 2  t - [ ( a 2 / 2 ) '  - p2] 
1 2  

a' = crt/DAll, p2 = Ett/DAZ 11 RZ (3  1) 

It is seen from Eq. (25)  that the case of full sphere corresponds to 

1 z a 2 / 2  = p  or k = k in Eq. (30) .  Hence for the spherical plate we need 

consider only k # k 
1 2' 

The solutions of Eq. (28)  and ( 2 9 )  can now be written as: 
00 

w =I ,  C r n t  C J (klr) t C J (k r) cosne 
on in n 2n n 2 

( 3 2 )  
n= 0 

00 

2 
F = - pR/4r - (Ett/AllR) AOnrn t (C In /k:)Jn(klr) t (Czn/ki)J,(k2r) cosne 

n= 0 (33) 
2 Where the f ini tenessofw,( l / r )aw/a r ,  aZw/a  r 2 ,  F, l / r a  F / a  r and aZF/  a r  

at r = 0 is taken into account. 

While it is possible to treat the problem in i t s  entirety, it is advantag- 

eous to consider the axisymmetric case first. 

8 



Axisymmetric Case 

The solution for the axisymmetric case (n = 0) is: 

In Eqs. (34) and (35) only three constants Coo, Clo and C 2 0 a r e  of 

importance, since any specification on the non-vanishing s t r e s s  resultants 

N and N involves only the derivatives of F, thus not involving bo at  all. 

The usual boundary conditions of simple support and complete edge 

fixity which normally give two conditions on w and i t s  derivatives, a r e  not 

enough to  determine the three constants involved. 

invoiving the derivatives of F are required. 

can be specifications on the membrane s t r e s s  resultants N 

tangential displacement u 

Ne , N 
boundary conditions we can set  up a system of algebraic equations leading to 

a characterist ic equation whose eigenvalues give us  the buckling coefficient 

corresponding to various modes. 

e 9 

Thus extra conditions 

The adclitioaal boundary zoii&itions 

or  the e J N+ 
or its derivative, which can be written in t e rms  of 9 

through the use of Eqs. (9) and (10). For each of these groups of 4) 

The following conditions represent simple support types of boundary 

conditions at r = 1 

w = 0, M = 0 , N  = N = - p R / 2  9 9 0  

w = 0, M = 0 ,  u + =  - (pR/2)(1-A)AI1/Ett 
9 

Of these conditions, Eqs. (36, 37) represent nonvanishing s t r e s s  

resultants,  Eq. (38)  the nonvanishing- tangential displacement. The corres-  

ponding characterist ic equations are: 

9 



8 
t 
1 

1 
I 
I 
I 
1 
1 
I 
I 
I 

1 
1 
I 
I 
I 

[k J ( k )  J ( k )  - k 3  J ( k )  J ( k ) ]  + (1-A)  ( k 2  - k 2 )  J ( k )  J ( k )  = 0 (39) 
1 1 1 2  1 0 1 1 2  2 0  2 1 1  2 1  

(k 2 - k 2 )  J ( k )  J ( k )  + (1-A) [k J ( k )  J ( k )  - k J ( k )  J ( k ) ]  = 0 (40) 

k k ( k 2 - k 2 ) J ( k ) J  ( k ) + k k  ( 1 - A ) [ k J  ( k ) J  ( k ) - k  2 0  J ( k ) J ( k ) ]  1 1 2  

1 0  2 I 1  2 0 1  I 2  1 2  0 1 0 2  

1 2 1  2 0 1  0 2 1 2  1 0  2 1 1  

+ (1  t A) [k J (k )J (k ) - k J (k ) J (k ) ]  + (1-A2)  (k 2-k 2 ) J  (k )J (k ) = 0  (41) 
1 0  1 1 2  2 0  2 1 1  2 1 1 1 1 2  

It is to  be noted that the condition in Eq. (37) would imply that 

Ne  f N - -pR at the edge, that is, the value of 0% = -pR at the edge. 

This would in i ts  turn,  result  in the vanishing of the constant C 

which is equivalent t u  considering a fourth order  equation for w. 

condition results in simpler expressions for the characterist ic equations as 

seen from Eqs. (40) and (41). 

9- 
in Eq. (34) 

Such a 
00 

In the completely fixed case, again, one may find an appropriate set  

of conditions that specify either membrane s t r e s s  resultants or displacements. 

But we can simplify the expressions by assuming that Ne = N 

rather ,  v%’ = -pR holds in this case also. 

Grouping both these conditions we may write the types and their resulting 

characterist ic equations as: 

Simply Supported Type: 

= -pR/2 or 

= 0 once again. 
9 

Then we find C 
00 

w = 0, M = 0, V2F = - pR at r = 1 (b 

(k - k 2 ,  J ( k )  J ( k )  + (1-A)[k J ( k )  J (k )-k J (k ) J  (k)] = 0 
2 1 0 1  0 2  1 0 2 1 1  2 0 1 1 2  

2 
Completely Fixed Type: w = 0, dw/dr = 0, V F = - pR 

k J  ( k ) J  ( k ) - k  J ( k ) J  ( k ) = O  
1 0  2 1 1  2 0  1 1  2 

(43) 

From Eqs, (27) through (31) we can find the roots of a characterist ic 

equatlon for a given p, in  accordance with a given set  of boundary conditions. 

Asymmetric Case (n > 0)  

For  n 0, we find now that all the s t r e s s  and s t ra in  components a r e  no 

longer independent of 8, the circumferential coordinate and hence, we find 

that c ross  t e rms ,  like N 
the displacement in the circumferential direction, u8 does not vanish in  general. 

enter into the problem. Further e + ,  ‘ e y  xe+, M e + ,  

10 



Again from Eq. ( 3 3 )  i t  is seen that A cannot be ignored i f  n >  0. 
on 

Thus with 4 constants to be determined, we need conditions on other s t r e s s  

resultants like N , or the corresponding strains in order to set  up the eigen- 

value problem. 

and ( 4 3 ) ,  that 

any requirement that w be zero at the boundary implies the vanishing of C 
for any n. 

wri te  the following characteristic equations for the different boundary conditions. 

9 4  
Hdwever, if we assume as in the axisymmetric case,  Eqs. (42 )  

F = -pR is a condition that is always valid at the edge, then 

on 
Hence, the eigenvalue problem is simplified. Therefore, we can 

Simply Supported Type: w = 0,  M 0, V 2 F  = - pR at r = 1 
+ =  

(k - 
2 

k ') J ( k )  J ( k )  t (1 - A )  [ k  J ( k ) J  ( k ) - k  J ( k )  J (k ) ] =  0 (44) 
1 n l n 2  i n  2 nt1 1 2 n  I n t i  2 

k J ( k ) J  ( k ) - k  J ( k ) J  ( k ) = O  
1 n 2 n t l  1 2 n 1 n t i  2 (45) 

Eqs. (44) and (45) a r e  seen to be the obvious generalizations of cor res -  

ponding axisymmetric cases  of Eqs. (42)  and (43) .  

described above Eqs. (44) and (45) a r e  valid for  n > O .  Fur thermore,  from the 

symmetries of Bessel  functions of integral o rders ,  we see that - + 6 does not 

affect Eqs. (44) and (45). Hence only positive values of k , k need be 

considered. 

Thus we see for the types 

1 2 

F rom Eqs.  (32 )  and (33 )  which a r e  the characterist ic equations for the 

simple support and completely fixed types for all values of n, an infinite 

number of roots can be obtained for a given p . 
given n corresponds to an increased number of nodal circles.  

root for any n,  would give us a single nodal circle at the edge. If we once 

again denote the nodal circles by m,  we can obtain from Eqs. (44) and (45), 
the eigen solutions (which corresponds to the buckling s t r e s s )  for each value 

of p (which describes the geometry of the shell suitably) according to their 

modes (m, n specifications. ) 

Each non-trivial root, for a 

Thus, the f i rs t  

Evidently, the solutions corresponding to the elastic case a r e  given 

. from Eqs. (44) and (45) by replacing A by veand re-interpreting k and k 
1 2 

1 1  



1 
I 
I 
I 
1 
I 
8 
I 
8 
I 
I 
8 
8 
I 
1 
8 
8 
I 
8 

Thus for the elastic case, from Eq. ( 3 1 )  we have 

CY‘ = mt/D and p 2  = Et /DR2;  k k = p 
1 2  

Numerical Results 

Eqs. (44) and (45) have been solved for various values of p on a high 

speed digital computer for the elastic case with E = E t 5 

ra t io  being taken as ve= v 

ratios. 

solved for  E /E 

= E; andvethe Poisson 

= 1/2 for ease of comparison with other Et/E 

Eq. (44) corresponding to the simply supported type has  then been 
P 5 

ratios of 0.75, 0.50 and 0. 25. t s  
For convenience of comparison with the results from cylindrical shell 

=tildiec, --- Ref. (31, the ceerdinatea have been redefined. A buckling coefficient 

k = u t  aZ/n2D where d is the base diameter, and a shell parameter Z given by, 

Z = (d2/Rt)(l-v 2)2 = (G/2 ) (d2 /R t )  

k and Z in  the following manner 

1 

have been used; CY and p a r e  related to 
P 

Elastic: k = utd2/.rr2D = d2CY2/n2 = ~CY‘/IT’ 

(47) 
Plastic: k = utd2/n2D = (d2/r2)  A a2 = 4a2A / m 2  

11 11 

Elastic: Z = ( 0 / 2 )  d 2 / R t  = 2 n / R t  = ( 2 / 0 )  P 
(48) 

1 

= (2 / f i )  A ( E t / E  ) - “ p  
11 5 

Plastic: Z = ( 0 / 2 )  d Z / R t  = 2 n / R t  

In Eqs. (47) and (48), since all lengths a r e  normalized with respect to 

the radius of the base circle,  d = 2. 

The case of the full sphere, that is, CY = 2 p , we have 

Elastic: k = ( 4 n / m 2 )  Z 

1 

Plastic: k = ( 4 f i / ~ ~ ) ( E ~ / E ~ ) ~  Z 

12 



t 
I 
I 
t 

I 
I 
I 
8 
1 
1 
8 

Figs. 2 and 3 show the k - Z  plots for  simply supported and clamped 

type edges for the elastic case. 

flat plate value (Z  = 0) and for large values of Z intersect each other, the 

intersections being more and more rapid as  the higher modes a r e  considered 

until a minimum curve drawn as shown in bold lines in Fig.  

distinguishable f rom the straight line for these values of Z. 

seen to be similar to that of cylindrical shells (Ref. 3) .  
corresponding to buckling s t r e s s  at a given Z value, a r e  shown separately in 

Fig. 

It i s  seen that various modes s ta r t  from a 

2 becomes in- 

This behavior i s  

These minimum curves 

4 for the simply supported and the clamped type cases. 

Returning to Fig. 2 we find that up to about Z = 9, the mode is the 

axisymmetric mode, while for higher values up to about Z = 30, the asym- 

met r ic  modes prevail. For higher values axi- and asymmetric modes occur 

quite rapidly until the minimum curves coincides with the straight line which 

corresponds to the case or' hii sphere. 

Fig. 5 presents the results of the elastic case in a slightly different 

form. The ordinate represents the cri t ical  s t r e s s  normalized with respect 

to the cri t ical  s t r e s s  of the spherical case and the abscissa represents 

h = q .  

The k - Z plots of Fig. 6, shows the curves that correspond to various 

buckling modes indicated by m,  n specifications, for Et /Es ratios of 1 and 0.25. 

It is a distinctive feature of the spherical plate problem that there is a single 

minimum line k = ( 4 f l / ~ r ' ) ( E ~ / E ~ ) ' Z  , for the value of E /E < t s- 
ponding to both axi- and asymmetric modes as a contrasted with the cylindri- 

cal  problem, Ref. 

depending upon whether the governing mode is axi- or asymmetric. 

1 

1, cor res -  

3 , where for the plastic case there a r e  two minimum lines 

To compare the plastic and elastic behaviors, using the plasticity 

reduction factor defined in Eq. (21), values of 

different modes by using the data presented in Figure 6 .  

presented in Figs. 7 and 8 . For  large Z values, where the straight line 
becomes the best approximation for the buckling s t r e s s  a s  seen from Fig. 

have been determined for the 

These data a r e  

6 

is seen f rom Eq. (49) to be equal to (E  / E  ) 
t s  

I 
I 
1 
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